234 research outputs found

    Modelling and interpreting spectral energy distributions of galaxies with BEAGLE

    Full text link
    We present a new-generation tool to model and interpret spectral energy distributions (SEDs) of galaxies, which incorporates in a consistent way the production of radiation and its transfer through the interstellar and intergalactic media. This flexible tool, named BEAGLE (for BayEsian Analysis of GaLaxy sEds), allows one to build mock galaxy catalogues as well as to interpret any combination of photometric and spectroscopic galaxy observations in terms of physical parameters. The current version of the tool includes versatile modeling of the emission from stars and photoionized gas, attenuation by dust and accounting for different instrumental effects, such as spectroscopic flux calibration and line spread function. We show a first application of the BEAGLE tool to the interpretation of broadband SEDs of a published sample of 104{\sim}10^4 galaxies at redshifts 0.1z80.1 \lesssim z\lesssim8. We find that the constraints derived on photometric redshifts using this multi-purpose tool are comparable to those obtained using public, dedicated photometric-redshift codes and quantify this result in a rigorous statistical way. We also show how the post-processing of BEAGLE output data with the Python extension PYP-BEAGLE allows the characterization of systematic deviations between models and observations, in particular through posterior predictive checks. The modular design of the BEAGLE tool allows easy extensions to incorporate, for example, the absorption by neutral galactic and circumgalactic gas, and the emission from an active galactic nucleus, dust and shock-ionized gas. Information about public releases of the BEAGLE tool will be maintained on http://www.jacopochevallard.org/beagle.Comment: added missing term in equation 4.1 (Erratum submitted to MNRAS

    The [OIII]++Hβ\beta Equivalent Width Distribution at z\simeq7: Implications for the Contribution of Galaxies to Reionization

    Full text link
    We quantify the distribution of [OIII]+Hβ\beta line strengths at z\simeq7 using a sample of 20 bright (MUV_{\mathrm{UV}} \lesssim -21) galaxies. We select these systems over wide-area fields (2.3 deg2^2 total) using a new colour-selection which precisely selects galaxies at z\simeq6.63-6.83, a redshift range where blue Spitzer/IRAC [3.6]-[4.5] colours unambiguously indicate strong [OIII]++Hβ\beta emission. These 20 galaxies suggest a log-normal [OIII]++Hβ\beta EW distribution with median EW = 759113+112^{+112}_{-113} A˚\mathrm{\mathring{A}} and standard deviation = 0.260.05+0.06^{+0.06}_{-0.05} dex. We find no evidence for strong variation in this EW distribution with UV luminosity. The typical [OIII]+Hβ\beta EW at z\simeq7 implied by our sample is considerably larger than that in massive star forming galaxies at z\simeq2, consistent with a shift toward larger average sSFR (4.4 Gyr1^{-1}) and lower metallicities (0.16 Z_\odot). We also find evidence for the emergence of a population with yet more extreme nebular emission ([OIII]+Hβ\beta EW>>1200 A˚\mathrm{\mathring{A}}) that is rarely seen at lower redshifts. These objects have extremely large sSFR (>>30 Gyr1^{-1}), as would be expected for systems undergoing a burst or upturn in star formation. While this may be a short-lived phase, our results suggest that 20% of the z\simeq7 population has such extreme nebular emission, implying that galaxies likely undergo intense star formation episodes regularly at z>>6. We argue that this population may be among the most effective ionizing agents in the reionization era, both in terms of photon production efficiency and escape fraction. We furthermore suggest that galaxies passing through this large sSFR phase are likely to be very efficient in forming bound star clusters.Comment: 20 pages, 11 figures. Accepted in MNRAS with minor revision

    Resolved maps of stellar mass and SED of galaxies from optical/NIR imaging and SPS models

    Full text link
    We report on the method developed by Zibetti, Charlot and Rix (2009) to construct resolved stellar mass maps of galaxies from optical and NIR imaging. Accurate pixel-by-pixel colour information (specifically g-i and i-H) is converted into stellar mass-to-light ratios with typical accuracy of 30%, based on median likelihoods derived from a Monte Carlo library of 50,000 stellar population synthesis models that include dust and updated TP-AGB phase prescriptions. Hence, surface mass densities are computed. In a pilot study, we analyze 9 galaxies spanning a broad range of morphologies. Among the main results, we find that: i) galaxies appear much smoother in stellar mass maps than at any optical or NIR wavelength; ii) total stellar mass estimates based on unresolved photometry are biased low with respect to the integral of resolved stellar mass maps, by up to 40%, due to dust obscured regions being under-represented in global colours; iii) within a galaxy, on local scales colours correlate with surface stellar mass density; iv) the slope and tightness of this correlation reflect/depend on the morphology of the galaxy.Comment: 4 pages, 2 figures, to appear in the proceedings of the IAU Symposium 262 "Stellar Populations: Planning for the Next Decade", Charlot & Bruzual ed

    Strong Gravitational Lensing and the Stellar IMF of Early-type Galaxies

    Get PDF
    Systematic variations of the IMF in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km/s. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ2.2\mu \lesssim 2.2, accounting for a dark matter fraction of 20-30%, where μ=1.3\mu=1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ1\sigma level with constraints imposed by gravity-sensitive line strengths. A two-segment power law parameterisation of the IMF (Salpeter-like for high masses) is more constrained (Γ1.5\Gamma \lesssim 1.5, where Γ\Gamma is the power index at low masses) but requires a dark matter contribution of 25%\gtrsim 25\% to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re1R_e. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalisations in a few massive lensing ETGs.Comment: Accepted for publication in MNRAS, 18 pages, 12 figures, 4 table

    Angular Sizes of Faint Field Disk Galaxies: Intrinsic Luminosity Evolution

    Full text link
    In order to explain the small scale-lengths detected in the recent deep field observations performed from large ground-based telescopes and from the Hubble Space Telescope, we investigate the predictions at high redshifts for disk galaxies that formed by infall. Changes with redshift in the observed properties of field galaxies are directly related to the evolution of the disks and of the stellar populations. We see that changes in the rest frame luminosity of a galaxy induce smaller values of half-light radii than are predicted assuming no evolution. Comparisons are presented with two observed samples from Mutz et al. (1994) and Smail et al. (1995).Comment: plain tex file + 3 postscript figures. To be published in ApJ

    Bursty stellar populations and obscured AGN in galaxy bulges

    Full text link
    [Abridged] We investigate trends between the recent star formation history and black hole growth in galaxy bulges in the Sloan Digital Sky Survey (SDSS). The galaxies lie at 0.01<z<0.07 where the fibre aperture covers only the central 0.6-4.0kpc diameter of the galaxy. We find strong trends between black hole growth, as measured by dust-attenuation-corrected OIII luminosity, and the recent star formation history of the bulges. We conclude that our results support the popular hypothesis for black hole growth occurring through gas inflow into the central regions of galaxies, followed by a starburst and triggering of the AGN. However, while this is a significant pathway for the growth of black holes, it is not the dominant one in the present-day Universe. More unspectacular processes are apparently responsible for the majority of this growth. In order to arrive at these conclusions we have developed a set of new high signal-to-noise ratio (SNR) optical spectral indicators, designed to allow a detailed study of stellar populations which have undergone recent enhanced star formation. Working in the rest-frame wavelength range 3750-4150AA, ideally suited to many recent and ongoing spectroscopic surveys at low and high redshift, the first two indices are equivalent to the previously well studied 4000AA break strength and Hdelta equivalent width. The primary advantage of this new method is a greatly improved SNR for the latter index, allowing the present study to use spectra with SNR-per-pixel as low as 8.Comment: 27 pages, submitted to MNRAS. Due to astro-ph size restrictions 6 figures in appendix are available as separate files. Full version, with full resolution figures available at http://www.mpa-garching.mpg.de/~vwild/HDelta/Hd_PCAmethod.pd

    Integrated Stellar Populations: Confronting Photometry with Spectroscopy

    Full text link
    We investigate the ability of spectroscopic techniques to yield realistic star formation histories (SFHs) for the bulges of spiral galaxies based on a comparison with their observed broadband colors. Full spectrum fitting to optical spectra indicates that recent (within ~1 Gyr) star formation activity can contribute significantly to the V-band flux, whilst accounting for only a minor fraction of the stellar mass budget which is made up primarily of old stars. Furthermore, recent implementations of stellar population (SP) models reveal that the inclusion of a more complete treatment of the thermally pulsating asymptotic giant branch (TP-AGB) phase to SP models greatly increases the NIR flux for SPs of ages 0.2-2 Gyr. Comparing the optical--NIR colors predicted from population synthesis fitting, using models which do not include all stages of the TP-AGB phase, to the observed colors reveals that observed optical--NIR colors are too red compared to the model predictions. However, when a 1 Gyr SP from models including a full treatment the TP-AGB phase is used, the observed and predicted colors are in good agreement. This has strong implications for the interpretation of stellar populations, dust content, and SFHs derived from colors alone.Comment: 6 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Ultraviolet spectra of extreme nearby star-forming regions --- approaching a local reference sample for JWST

    Full text link
    Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z/2Z_\odot/2. Such tests are particularly important for interpreting the surprising high-ionization UV line emission detected at z>6z>6 in recent years. We present HST/COS ultraviolet spectra of ten nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8<12+logO/H<8.57.8<12+\log\mathrm{O/H}<8.5) and present uniformly large specific star formation rates (sSFR 102\sim 10^2 Gyr1\mathrm{Gyr}^{-1}). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z67z\sim 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12+logO/H8.012+\log\mathrm{O/H}\lesssim 8.0 (Z/Z1/5Z/Z_\odot \lesssim 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+\mathrm{He^+}-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.Comment: 27 pages, 13 figures, 11 tables, accepted for publication in MNRA

    On the ages of bright galaxies 500\sim 500 Myr after the Big Bang: insights into star formation activity at z15z \gtrsim 15 with JWST

    Full text link
    With JWST, new opportunities to study the formation and evolution of galaxies in the early Universe are now emerging. Spitzer constraints on rest-optical properties of z7z \gtrsim 7 galaxies demonstrated the power of using stellar masses and star formation histories (SFHs) of galaxies to indirectly infer the star formation history of the Universe. However, only the brightest individual objects at z8z \gtrsim 8 could be detected with Spitzer, making it difficult to robustly constrain past activity at z10z \gtrsim 10. Here, we leverage the greatly improved rest-optical sensitivity of JWST at z8z \gtrsim 8 to constrain the ages and SFHs of eleven UV-bright (MUV19.5M_\text{UV} \lesssim -19.5) galaxies selected to lie at z8.511z \sim 8.5 - 11, then investigate implications for star formation activity at z15z \gtrsim 15. We infer the properties of individual objects in our sample with two spectral energy distribution modelling codes, then infer a distribution of ages for bright z8.511z \sim 8.5 - 11 galaxies. We find a median age of 30\sim 30 Myr, younger than that inferred at z7z \sim 7 with a similar analysis, which is consistent with an evolution towards larger specific star formation rates at early times. The age distribution suggests that only 9\sim 9 percent of bright z8.511z \sim 8.5 - 11 galaxies would be similarly luminous at z15z \gtrsim 15, implying that the number density of bright galaxies declines by approximately an order of magnitude between z8.511z \sim 8.5 - 11 and z15z \sim 15. This evolution is challenging to reconcile with some early JWST results suggesting that the abundance of bright galaxies does not significantly decrease towards very early times, but we suggest this tension may be eased if young stellar populations form on top of older stellar components, or if bright galaxies at z15z \sim 15 are observed during a burst of star formation.Comment: 13 pages, 9 figure

    Searching for Extremely Blue UV Continuum Slopes at z=711z=7-11 in JWST/NIRCam Imaging: Implications for Stellar Metallicity and Ionizing Photon Escape in Early Galaxies

    Full text link
    The ultraviolet (UV) continuum slope (β\beta where fλλβ_\lambda\propto \lambda^\beta) of galaxies is sensitive to a variety of properties, from the metallicity and age of the stellar population to the attenuation from dust through the galaxy. Considerable attention has focused on identifying reionization-era galaxies with very blue UV slopes (β<3\beta<-3). Not only do such systems provide a signpost of low metallicity stars, but they also identify galaxies that likely have ionizing photons leaking from their HII regions as such blue UV slopes can only be seen if the reddening effect of nebular continuum has been diminished. In this paper we present a search for reionization-era galaxies with very blue UV colors in recent JWST/NIRCam imaging of the EGS field. We characterize UV slopes for a large sample of z711z\simeq 7-11 galaxies, finding a median value of β=2.1\beta =-2.1. Three of the lower luminosity (MUV19.5_{\rm{UV}}\simeq -19.5) and lower stellar mass (5-6×107\times10^7M_\odot) systems exhibit both extremely blue UV slopes (β=3.1\beta=-3.1 to 3.2-3.2) and rest-optical photometry indicating weak nebular line emission. Each system is very compact (re<_e<260 pc) with very high star formation rate surface densities. We model the SEDs with a suite of BEAGLE models with varying levels of ionizing photon escape. The SEDs cannot be reproduced with our fiducial (fesc,HII_{\rm{esc,HII}}=0) or alpha enhanced (Z<ZISM_*<Z_{\rm{ISM}}) models. The combined blue UV slopes and weak nebular emission are best-fit by models with significant ionizing photon escape from HII regions (fesc,HII_{\rm{esc,HII}}=0.6-0.8) and extremely low metallicity massive stars (Z_*=0.01-0.06 Z_\odot). The discovery of these galaxies highlights the potential for JWST to identify large numbers of candidate Lyman Continuum leaking galaxies in the reionization era and suggests low metallicity stellar populations may be veryComment: 11 pages, 8 figures, 2 tables; Submitted to Ap
    corecore